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We study the dynamics of spatiotemporal pattern formation in a nonlinear proliferation system �e.g., cell
division supported on a field of nutrition�, in which the mechanism of activation and its self-suppression is
simultaneously implemented. This dynamical model has been numerically realized with coupled cellular au-
tomata �CA�, and various long-standing spatiotemporal patterns have been observed. Among others, a succes-
sive generation of traveling waves by implanting a spot of cells onto the field consisting of nutrition and
activator is particularly interesting. This takes place despite the fact that the present reaction network has a
stable fixed point and therefore autonomous temporal oscillatory does not exist in the mean field. Indeed, the
reaction-diffusion equation method �RD� applied to this network reproduces only a single excitable wave and
soon falls into a steady state �a fixed point� without the following propagating waves. This system, having a
stable fixed point, is an excitable system of different kind from the FitzHugh-Nagumo model in that it can
generate a pulse propagating outwards by adding only a single cell onto it from outside the system. The present
excitation upon dropping a cell is amplified to macroscopic level by a hidden dynamics of oscillation between
the activation and its self-suppression. A pulse thus generated is propagated in space time with the help of
diffusion. Through a precise comparison between CA and RD, it is found that a very small amount of residue
of the cells and activators, which are left unburned in the stochastic treatment of reactions by the CA, becomes
a seed to excite the system and generate the next pulse wave. This newly born wave can leave another seed of
reaction in the field after its propagation. Based on this analysis, we account for the appearance of other
patterns observed. A possible control of these patterns by varying the spatial distribution of initial concentration
of the relevant agents such as the activator is also discussed.
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I. INTRODUCTION

Nonlinear growth in multiple agent systems such as those
in autocatalytic reactions is often associated with pattern for-
mation ubiquitously, ranging from the atomic scale phenom-
ena �1� to the morphology of living bodies �2�. It is quite
interesting to explore how those diverse patterns are gener-
ally ruled. Among others, in this paper, we study successive
spatiotemporal evolution of traveling waves �autonomous
successive pulse generation� generated in excitable media
due to nonlinear proliferation dynamics.

It is widely recognized that there are at least two mecha-
nisms that can generate pulse wave�s� in chemical and/or
biological systems �3–7�. One is the so-called oscillatory sys-
tem of “reaction” network �not necessarily chemical reac-
tions�, which has a temporal oscillation under stirred condi-
tion �in a mean field�. In a static experimental situation, this
system propagates self-sustained pulse waves forming a pat-
tern such as the concentric ring pattern in space time. The
initial pulse is caused by a pace-maker or the presence of an
initial phase shift and the successive pulses are propagated
outward with the help of diffusion. The most well-known
example of such a system is the Belousov-Zhabotinskii �BZ�
reaction under appropriate experimental conditions �8�. A
mathematical model reduced from the BZ reaction, Orego-
nator, has been established and the mechanism of the tempo-
rally oscillatory reaction in a mean field is now well under-
stood �9,10�. The BZ reaction also shows various
spatiotemporal patterns such as spiral patterns and target pat-
terns depending on the conditions imposed and it is known
that the reaction-diffusion equation �RD� method reproduces
such a dynamical pattern quite well �11,12�.

The other important mechanism of generating a pulse is
observed in the so-called excitable system. An excitable sys-
tem sits on a stable fixed point and is static. However, when
applied an external perturbation or noise of an amplitude
larger than a threshold value, the system can undergo exci-
tation taking a circuit path in state space before returning to
the fixed point. To generate pulses successively, continuous
noise should be applied. Furthermore, Pikovsky and Kurths
�13,14� found the existence of an intensity of noise that
maximizes the coherence among thus generated pulses. The
FitzHugh-Nagumo �FN� equation, a mathematical model of
transmittance of excitement through nerve axon under an
appropriate set of system parameters, is a well-known ex-
ample of the excitable system.

In the present paper, we report our finding of a system that
exhibits a self-sustained �i.e., not driven by external noise�
generation of successive traveling waves but its mean-field
counterpart is not oscillatory in contrast to the BZ reaction.
Indeed, the solution of its reaction network falls into a fixed
point if diffusion is not present. Therefore the last half of the
present paper is devoted to clarification of the mechanism of
these successive traveling waves. We also investigate how to
control the appearance of such dynamical patterns.

Diffusion and noise �or fluctuation� �15� are the key quan-
tities in the study of pattern formation. The reaction diffusion
equation approach with or without stochastic noise, which
are often based on a mean-field description such as the rate
equations in chemical reaction systems, and the cellular au-
tomaton �CA� �16� are among the most widely used methods
in pattern formation dynamics. They have their own virtues.
However, it sometimes happens that these two methods give
different solutions, namely, different pattern formation to the
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same problem. We have reported and analyzed the origin of
their difference in a very simple model study of static pattern
formation of bacteria colony �represented in Eqs. �1a� and
�1b�� �17�. It turns out that the natural treatment of noise and
its induced symmetry breaking in the CA algorithm are all
favorable to generation of wide variety of patterns. Here in
treating the dynamics of Eqs. �2a�–�2e�, another dramatic
difference between CA and RD is found, which should give
a critical clue for the mechanism of the successive traveling
waves.

The paper is organized as follows. In Sec. II, we introduce
our model system of nonlinear proliferation system, which
includes the activation process for proliferation and its self-
suppression. Various dynamical patterns emerging in the CA
simulation of this system are exhibited. We also show an
interesting example suggesting a possible control of pattern
formation. Section III is devoted to phenomenological analy-
ses on how the basic spatiotemporal patterns have emerged,
particularly on the mechanism of the wave propagation in the
early stage. In Sec. IV we attempt to extract more generic
mechanism of the self-sustained generation of successive
traveling waves by identifying the present system to be an
excitable system of a different kind from the FitzHugh-
Nagumo system. To clarify the mechanism proposed, we
compare the CA with the relevant RD equations with and
without noises. This paper concludes in Sec. V with some
remarks.

II. CELLULAR AUTOMATA STUDY ON A
PROLIFERATION SYSTEM INVOLVING THE

PROCESSES OF ACTIVATION AND INHIBITION

A. Dynamical system studied

We first describe our system of autocatalytic reaction. We
begin with a very basic system consisting of a proliferating
agent, say a cell, X and nutrition N, whose dynamics is

X + N → 2X , �1a�

X → P1. �1b�

X is transformed to an inactive body P1 subject to a given
probability if it misses N. Complicated patterns such as the
so-called viscous finger have been found to emerge from
such a very simple system �17�. To seek further for spa-
tiotemporal patterns, we add a pair of mutually antagonistic
elements, activator �A� and inhibitor �I�. The actions balanc-
ing between these elements can potentially give birth to a
large fluctuation in dynamics, which is crucial to the succes-
sive wave generation as observed below.

After surveying many different reaction networks, we
have found a system that gives particularly interesting phe-
nomena. It is the following network: system PIA �prolifera-
tion system with inhibition and activation�,

X + A � X�, �2a�

X� + N → 2X + 2A , �2b�

X → P1 + �I , �2c�

A + I → N , �2d�

I → P2. �2e�

It is not difficult to interpret the above sequence of dynam-
ics: a cell �X� can be doubled by consuming nutrition �N�
�Eq. �2b��, only after it is activated �or energized� by the
activator �A� with X� being an activated intermediate of X
�Eq. �2a��. The activator A is also doubled in this cell divi-
sion process. When X dies for starvation �Eq. �2c��, it emits
an inhibiting agent �I�, which can annihilate the activator A
�Eq. �2d��. The inhibitor itself is to be eventually extin-
guished if it does not encounter A �Eq. �2e��.

Some notes about this model would be in order. �i� This
network represents a set of procedures to drive a general
nonlinear proliferation dynamics, although we would not
specify a realistic system from which this model can be ex-
tracted. It should be understood therefore that these equa-
tions do not necessarily obey the mass action law based on
the conservation of mass, and therefore the coefficients in the
equations do not indicate the stoichiometry of chemical re-
actions. On the other hand, the number of cells, for instance,
is not simply proportional to its weight, depending on the
species and age. Furthermore, some of the environmental
quantities such as the extent of sunshine are not explicitly
considered in the above dynamics. For instance, we may
reformulate Eq. �2c� as X+S1→P1+�I, where S1 is an ex-
ternal source of, say, energy, which nevertheless does not
modify the results presented below. �ii� We note that the
inhibitor here is designed to suppress the activation process
�Eq. �2d�� but not reducing �killing� the cells directly. We
have examined such a system, which includes X+ I→2N in
place of the process of �Eq. �2d��, and found nothing particu-
larly exciting. �iii� We occasionally call X and N cell and
nutrition, respectively, in the following text as though we
were mimicking a biological system. However, this does not
have to be the case, and these agents may be regarded as
general elements consisting of a group or community. Fi-
nally, in the present CA, every element is counted as an
integer number.

B. Coupled cellular automata used

The coupled cellular automata used in this paper is essen-
tially the same as that we have developed and applied in the
previous paper �17�, and the reader may want to skip to the
next subsection. The methodological details are referred to
that paper and Ref. �18�, and we here outline only the part
particularly relevant to the present work. We describe tech-
nical details and algorithms actually applied in the Appendix.
For the discussion for coupled CA, see also �19�.

The CA dynamics applied to the present system, Eqs.
�2a�–�2e�, consists of five CA’s fields, and each CA field
represents the spatiotemporal distribution of the number of
particles of each component. With these fields, we run the
following three procedures: �1� diffusion process on each
field, �2� reaction process through the communication of
each field, and �3� the coupling between reactions and diffu-
sion. The diffusion on each CA is allowed to be evolved in
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time independently from other CA’s, whereas the reactions
are treated as interactions between the particles on different
CA’s. The ratio of time steps of these automata should be
determined so as to represent the physical constants prede-
termined such as those for the reaction rates and diffusions.
Each CA field realizes cellular dynamics on two-dimensional
triangular lattice coordinates, in which any single node has
six nearest-neighbor nodes, except for those on the boundary.

These diffusive motions are treated as a random walk in
each CA field. Each particle is allowed to move to one of its
nearest-neighbor nodes or remains at the same node. Let pi
be a probability for a particle of the component i to stay at
the same node �0� pi�1�. Since particles can diffuse in an
isotropic manner, the probability of moving to one of the
nearest-neighbor nodes is �1− pi� /6 in the triangular coordi-
nate system. Running a random number in �0,1�, we deter-
mine the position to which a particle should move.

The reaction process is treated as an interaction between
the relevant independent CA’s, which are responsible for dif-
ferent agents. We regard each reaction as a stochastic process
and set a predetermined probability for particles to react in a
unit time �tR �we define �tR later�.

The diffusion processes for different components on the
individual CA’s run independently with their own time inter-
vals. They are periodically forced to couple with each other
for the reactions in a certain time interval. These timings are
fixed by the following relations. Suppose that �tDi

is a unit
time length for the diffusion process of a component i. Also,
let �tR be the unit time interval for the communication of
each CA’s to be made to take account of the reactions. Then
the relative length for these timings are numerically fixed by
predetermining the ratio �diffusion frequency� �i=�tR /�tDi

.
The diffusion frequency �i is correlated with the diffusion
constant Di of the component i in the present stochastic
model such that �17�

Di =
�1 − pi��i

4
, �3�

where 1− pi is the mobility of particles given above in the
description of diffusion process.

C. Patterns varying with the initial concentration of activator
and nutrition

We here show that the model �Eqs. �2a�–�2e�� can gener-
ate various spatiotemporal dynamics of pattern formations
with the CA method. For these to happen, an appropriate
value of � in Eq. �2c� should be predetermined so as to
satisfy ��1. If ��1, the number of potentially produced
particles of I from a single X is less than 1. Furthermore, an
I particle can produce at most a single N particle in the
inhibition reaction �Eq. �2d��, so that the number of poten-
tially produced N particles is less than 1 under a single oc-
currence of the proliferation of X. This implies that the total
amount of N keeps decreasing and N is eventually exhausted,
resulting in the termination of the entire reactions. On the
other hand, if � is too large, too much I is produced in
reaction �2d�, and consequently the spatiotemporal patterns
are not generated because of the too strong inhibitory effect.

After surveying these possibilities numerically, we hence set
�=3 in this paper.

We now show some typical spatiotemporal patterns which
are generated in system PIA. As an initial condition, a small
droplet consisting of X is placed at the center of the field, and
N and A are uniformly distributed over the system. No I is
initially prepared. The system parameters used are summa-
rized in Table I and the periodic boundary condition has been
imposed. The basic pattern is concentric ring pattern �CRP�,
which is born under the initial parameters �N0 ,A0�= �10,5�
as shown in Fig. 1. The excitable waves generated from two
spiral cores near the center of the system form concentric
rings. In this case, the densities of the individual components
oscillate “periodically” at a point marked with � in panel �a�
of Fig. 1 as shown in panel �b�.

In addition to the above standard CRP, we observe a va-
riety of spatiotemporal and stationary patterns in this system
by changing the initial condition �N0 ,A0�. They are roughly
classified as follows �see Fig. 2�: �i� CRP, shown as above
�Figs. 1 and 2�b��. �ii� Random ring pattern �RRP�, which is
generated in various points with random time intervals. This
pattern formation lasts for a long time �Fig. 2�a��. �iii� Tur-
bulent wave pattern �TWP�, which consists of numerous ex-
citable waves generated from the spiral cores at various
points over the entire field �Fig. 2�d��. �iv� Spatially homo-
geneous distribution �SHD�, in which only X ,X� and A are

TABLE I. System parameters chosen for the cellular
automata.

X0 50 pX 1/7 �X 1

N0
a pN 1/7 �N 1

I0 0 pI 1/7 �I 1

A0
b pA 1/7 �A 1

X0
� 0 pX� 1/7 �X� 1

r1
c 0.90 r2

c 0.90 r3
c 0.15

r4
c 0.90 r5

c 0.25 r1
� d 0.05

aTo be varied as controlling parameters.
bTo be varied as controlling parameters.
cr1 ,r2 ,r3 ,r4 and r5: reaction probability in Eqs. �2a�–�2e�, respec-
tively.
dReaction probability of the reverse process in Eq. �2a�.
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FIG. 1. �Color online� �a� Snapshot of the X distribution at
t=3500 in a concentric ring pattern. The color bar indicates that the
darker �red� part contains the more X particles. �b� Time evolution
of the individual components monitored at a point marked with �

in panel �a�.
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uniformly distributed �not shown�. �v� Vanished pattern
�VP�, in which the excitable wave is generated only once
from the initial pointlike area of X and then extinguished
leaving only N behind �not shown�.

The phase diagram of these patterns on a surface of
�N0 ,A0� is given in Fig. 3. The generating mechanism of
each pattern is described in the next section. Incidentally, our
numerical calculations have revealed that the system PIA can
also generate both the various Turing patterns and the self-
replicating pattern subject to the condition that N and I dif-
fuse faster than the other components. However, this aspect
is not in the main scope of this paper.

D. Possible control of pattern formation

Through the above numerical studies, it turns out that the
ratio of the amount of A0 to that of N0�A0 /N0� can be re-
garded as a good parameter to specify the patterns. This sug-
gests that an interesting pattern can be given by the spatially
inhomogeneous distribution of these components. For in-
stance, the pattern formation observed in Fig. 2 suggests that
a spatial gradient of the concentration of A0 with a uniform
distribution of N0 would make a new pattern. Figure 4 shows
such an example. Figure 4�d� exhibits a gradient of A0, which
has the smaller value in the upper part of the field. The
resultant pattern shows the coexistence of the CRP and TWP
in the upper and lower half areas, respectively. These wave
patterns are dynamically propagated, but the regions they
individually cover do not change much for a long time. This

is possible because both patterns happen to have almost the
same oscillation frequency �this has been verified with the
Fourier analysis�.

It is thus clarified that the spatial distribution of A0 may
be utilized as a control parameter to determine the ultimate
patterns. This aspect deserves further study. Indeed, the
present study has been partially stimulated in a qualitative
fashion by the remarkable discovery of Asashima et al. �20�
that the initial gradient of activins �a morphogen� in the pro-
cess of cell differentiation after fertilization controls which
organs are to be formed in a biological system.

III. PHENOMENOLOGICAL MECHANISM OF PATTERN
FORMATION IN CA DYNAMICS

We first analyze the detailed mechanism for the formation
of the patterns from phenomenological view point. The more
abstract and generic mechanism extracted from phenomenol-
ogy is discussed in the next section in more general context.

A. Mechanism of the concentric ring pattern

We here focus on spatiotemporal dynamics of the CRP as
a basic pattern emerging in system PIA and numerically
clarify the basic mechanism of temporal oscillation and suc-
cessive wave propagation in the early stage.

1. Implicit mechanism of temporal oscillation

We first describe the detailed mechanism of temporal os-
cillatory behavior of each component at a point �see Fig.
1�b�� due to successive wave propagation. We first note that
Eqs. �2a�–�2e� can be roughly divided into two parts from the
viewpoint of functioning: subprocess �P�

X + A � X�, �4a�

X� + N → 2X + 2A , �4b�

subprocess �S�

X → P1 + 3I , �5a�

A + I → N , �5b�

(a) (b) (c) (d)

(N0,A0)=(10,4) (N0,A0)=(10,6)(N0,A0)=(10,5) (N0,A0)=(10,7)

FIG. 2. �Color online� Snapshots of the X distribution for differ-
ent initial number density of A�A0�. N0 is fixed at 10 throughout. �a�
RRP �A0=4�, �b� CRP �A0=5�, �c� CRP+TWP �A0=6�, and �d�
TWP �A0=7�. All the figures display the pattern at t=5000.
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FIG. 3. �Color online� Phase diagram with respect to A0 and N0.
The symbols represent �+� CRP, ��� RRP, ��� TWP, ��� SHD, and
�	� VP.
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FIG. 4. �Color online� �c� Snapshot at t=5000 of the X distribu-
tion in the system that has a gradient in the initial distribution of A0

as shown in the panel �d�. CRP �a� and TWP �b� appear in the upper
and lower half spaces, respectively. Two domains maintain a stable
balance for a long time.
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I → P2. �5c�

In the propagation process �P�, the element X increases con-
suming N, as long as the activator A is available. On the
other hand, a large amount of X produced in �P� triggers the
suppressing process �S� and produces the inhibitor I, which
reduces A to N. This reduction of A in turn suppresses the
activation process of �P�, resulting in fewer production of X.
Then, the fewer supply of X from �P� makes the process of
�S� slower with some time delay, which reduces the amount
of I concomitantly. However, after the subprocess �S� “ter-
minates,” an abundance of N’s are left behind, which may be
utilized if the next burst of subprocess �P� can resume. �As
will be shown later, the actual wave-propagation dynamics
requires a little more precise analysis.�

2. Successive waves propagation in the early stage

The most characteristic aspect in the formation of spa-
tiotemporal pattern in the model �Eqs. �2a�–�2e�� is found in
its very early stage. As described below in great detail, we
observe the successive propagation of discrete concentric
wave fronts blowing outward. Below we track the sequential
propagation of these wave fronts.

a. Two-stage wave dynamics. Several waves are born se-
quentially at the point where X is initially implanted and then
each is propagated forming a clear wave front individually.
See Fig. 5�a�, where the wave fronts of the first and the
second waves are clearly observed.

The natures of the first and second waves are totally dif-
ferent. The first wave has a low concentration of X and trav-
els fast, leaving a high concentration of X� behind in the
field. On the other hand, the second wave front contains a
high concentration of X and travels very slowly at first. How-
ever, the clear circular wave front of the second wave breaks
suddenly at some time later �Fig. 5�b��, and its shape begins
to fluctuate violently looking like flame. Incidentally, the ver-
tical axis right to panel �b� of Fig. 5 represents the radial
coordinate of the CA field, which is to be denoted as r in
what follows.

b. First wave. Figure 6 shows a snapshot at t=400 of the
spatial concentration �in the radial direction� of the indi-

vidual components nearby the first wave front. The dynamics
of the individual components is summarized as follows: X
makes a pulse at the wave front by sudden increase from
zero and decrease to a small amount, that is, only a little X is
left behind within the wave. On the other hand, X� forms a
kink by rapidly increasing from zero to a large amount.
Compensating this sudden increase, N makes an antikink by
changing from an almost uniform distribution of the initial
high concentration to a very small value. Thus N has been
exhausted almost completely. The concentration of A is a
little higher after the passage of the wave front �recall that A
was uniformly distributed in the initial condition�. No I is
observed in this stage.

Summarizing these dynamical changes of the concentra-
tions, we can readily conclude that this first wave is driven
almost only by subprocess �P�, Eqs. �4a� and �4b�. The total
amount of X increases exponentially with a full use of the
two steps of Eqs. �4a� and �4b�. However, the exponential
shortage of N soon terminates the process X�+N→2X+2A
and the process X+A→X� consumes much of X leaving X�

behind. Eventually this step is also terminated by the short-
age of X. Thus it turns out that the first wave effectively
changes the CA field so that N�+A�→X��+A�. With this
modification, the field becomes ready to be followed by the
second wave.

Such modification of the field by the first wave as above
is necessary for the second wave to be generated and propa-
gated. To confirm this view, we have examined dynamics
arising from the different set of initial conditions having
�N0 ,X0

��= �0,10� in place of �N0 ,X0
��= �10,0�. Under this

condition, essentially the same wave as the second wave,
which will be described below, has been generated at the
outset without the generation of a guiding wave like the first
wave.

c. Second wave. After the passage of the first wave, the
second wave is born in the field that is already filled with
much X� and a little N. Figure 7 shows a snapshot of the
spatial distributions of the individual components at t=400,
which has the pulses of X involved in the first wave at r
�220 and the second one at r�50. In the area of the second
wave, we observe the following: �i� X forms a much higher
pulse than that of the first wave, �ii� I also makes a pulse

First wave

Second wave

(a) (b)
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200

-200

400

-400

FIG. 5. �Color online� Birth and propagation of the waves in the
early stage of spatiotemporal pattern formation in system PIA. �a�
The wave fronts of the first and second waves are clearly observed
in the concentration of X. Even the seed of the third wave is already
seen �t=400�. �b� Break of the second wave at a later time
�t=650�, which is closely followed by the mature wave.
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FIG. 6. �Color online� Spatial distributions of the concentration
of the individual components near the wave front of the first pulse
in the radial direction at t=400.
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whose phase comes a little later than that of X, �iii� both X�

and A are exhausted almost completely, and �iv� N increases
dramatically and recovers to a higher level than the initial
one �recall that A was also prepared in the initial
condition�.

Due to the passage of the first wave, X and N are mostly
exhausted. But, X is consumed not only in X+A�X�, but
also in X→P1+3I, which produces significant amount of the
inhibitor I. I thus produced consumes A in A+ I→N and
thereby represses the activation process Eq. �2a� and at the
same time reproduces N. N thus produced in turn burns X�,
which has already filled the field after the first wave, in the
process X�+N→2X+2A. Thus it turns out that X�+N→2X
+2A plays an important role in subprocess �S� too. Therefore
subprocess �S� should be modified so as to include this reac-
tion within it; subprocess �S��

X� + N → 2X + 2A , �6a�

X → P1 + 3I , �6b�

A + I → N , �6c�

I → P2. �6d�

After A has been almost completely consumed up as shown
in Fig. 7, this subprocess �S�� effectively stops and the field
is mostly filled with N.

d. Merge of the second and third waves. Then the third
wave follows. Figure 8 displays what happens to the second
and third waves sequentially. Panel �a�: the third wave,
which travels fast, follows right behind the slowly moving
second wave �r�60�. Panels �b� and �c�: then these waves
contact each other. The fourth wave appears already behind
them. Panel �d�: these two waves finally merge. At the same
time, the second wave becomes broad in the forward direc-
tion and its shape begins to be deformed, reflecting that this
part �r=100�130� in the front end of the second wave be-
comes activated because of the increase of I that is diffusing

into this region. Panel �e�: the merged wave becomes even
broader. Panel �f�: X in this broad region rapidly increases by
the proliferation reactions �subprocess �P��, and the peak be-
comes bimodal again. Panel �g�: the inner peak �r�160� of
the bimodal peaks decays, because the inhibiting process
rapidly proceeds because of the excess I left behind. Panel
�h�: finally, the pulse originally arising from the second and
third waves becomes a single peak again. It turns out that the
shape of this wave is now similar to that in panel �d�. The
similar deformation of the wave experiencing from panel �d�
through �h� is repeated. By this merge of the second and third
waves, the field behind the merged wave is filled mostly with
N again �see panel �h��.

It seems in a macroscopic scale as though the CA field is
occupied exclusively by N after the propagation of the
merged waves and therefore there was no seed for the fol-
lowing core to be generated. The reality is, however, that a
small amount of X and A �or X�� can be left behind because
of the stochastic fluctuation realized by the CA dynamics.
These surviving particles of X and A �or X�� can ignite the
reaction process of subprocess �P�, since the abundant N co-
existing at the same place can support the reaction and help
the formation of a next core. Figure 9 evidences this situation
clearly.

e. Mature waves. Following the second wave, new waves
are generated from the cores which are in turn formed from
the residual particles �rump� of X and A �or X�� after passing
of the second wave �see Fig. 9�. We collectively refer to
these waves as the mature wave in what follows. Any mature
wave propagates with almost a steady shape outwards with
almost the same speed �see Fig. 10�. A precise look at the
mature wave of X in this figure shows that it has a small
bump in the front part of the wave �r�175�. This small
shoulder �bump� should work like the first wave. However,
the essential difference is that the “second wave” �the main
part of the mature wave� follows right after the first one
without a space between them. Mature waves are generated
in an environment where small amount of X and A are left in
the abundant N field. �Recall the initial condition that only X
particles are planted at the center in the uniformly distributed
N and A.� In this environment, such a small amount of A
cannot be used to activate all the existing X quickly and
consequently the product X soon generates I, which ignites
subprocess �S� again. In summary, the residual X and A re-
maining after incomplete consumption works as seeds that
keep the system oscillatory between the subprocesses �P� and
�S� such that �P�→ �S�→ �P�→ �S�→¯.

B. Mechanism of the other spatiotemporal patterns

On the basis of the detailed mechanism of wave propaga-
tion studied above for the CRP, we here summarize the gen-
erating mechanisms of the other spatiotemporal patterns.

1. RRP [Fig. 2(a)]

RRP are generated in case where the initial quantity of
activator A �A0� is relatively small. In this case, the mature
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FIG. 7. �Color online� Spatial distributions of the concentration
of the individual components near the wave fronts of the first wave
�r�220� and the second wave �r�50� at t=400.

KENTA ODAGIRI AND KAZUO TAKATSUKA PHYSICAL REVIEW E 79, 056219 �2009�

056219-6



waves are less frequently generated one after another. This is
because the second wave is quickly propagated, proceed, and
leave. As a result, just as described above, the residual agents
X and A can have some induction time to encounter each
other to react as X+A→X� to form a new core. Thus the new
cores can be generated here and there rather randomly, from
which new waves emerge.

Furthermore, it is helpful to recall that the initial distribu-
tion of X is a pointlike one at the center of the system, and N
and A are uniformly distributed over the system. No I is
initially prepared. If the concentration of A0 is low, the reac-
tions of subprocess �P�, Eqs. �4a� and �4b�, should be over
quickly, and therefore the second wave can be generated in
the earlier stage. On the other hand, A is eventually trans-
formed to X� and/or N in a periodic manner subject to the
conservation of N+A+X�. Therefore the smaller amount of
A0 gives rise to the less X� and/or N within the mature waves

in subprocesses �P� and �S�. Thus, the firing of subprocess
�P� is less probable and the core generation is retarded.

2. TWP [Fig. 2(c)]

In contrast to RRP, TWP is generated in case where A0 is
large. For the opposite reason to that for the RRP formation,
many mature waves are formed one after another frequently
and collide each other. Thus numerous spiral waves are dis-
tributed in a random fashion, which are densely packed in a
slowly expanding circle of the second wave. Depending on
the timing of the formation and passage of the second wave,
CRP is generated and then TWP can follow it as seen in Fig.
2�c�.

3. SHD

In case where A0 is excessively prepared over the amount
of N, the distributions of X, X�, and A become uniform over

X

X*
A
I
N

(b) t=500

(c) t=550 (d) t=600

(e) t=650 (f) t=700

(g) t=750 (h) t=800

N
u
m
b
er
d
en
si
ty

N
u
m
b
er
d
en
si
ty

N
u
m
b
er
d
en
si
ty

N
u
m
b
er
d
en
si
ty

Position

0

5

10

15

20

25

0 50 100 150 200 250 300
0

5

10

15

20

25

0 50 100 150 200 250 300

0

5

10

15

20

25

0 50 100 150 200 250 300

(a) t=450

0

5

10

15

20

25

0 50 100 150 200 250 300

0

5

10

15

20

25

0 50 100 150 200 250 300
0

5

10

15

20

25

0 50 100 150 200 250 300

0

5

10

15

20

25

0 50 100 150 200 250 300
Position

0

5

10

15

20

25

0 50 100 150 200 250 300

FIG. 8. �Color� Propagation of
the second and third waves, which
are merged to a single wave.
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the system after exhausting both N and I. This final distribu-
tion corresponds to that in the region between the first and
the second waves �see Fig. 7�. In this case, only the first
wave emerges from the pointlike distribution of X at the
center, but N in the center region is too much exhausted to
generate the second wave. This is because X produced by the
autocatalytic reaction in subprocess �P� immediately reacts
with A in the center region because of excess A and changes
to X� �reaction �2a��. Thus X cannot increase and conse-
quently I does not increase either. This implies that there is
no supply of new N after the original N has been consumed
up. After all, the entire reaction system is frozen without
generating the second wave.

4. VP

In case where N is overwhelmingly prepared over A ini-
tially, all the X disappear from the system. In this case, the
second wave travels with a speed a little faster than that of
the first wave. They eventually collide, and virtually no core,
from which new waves can generate, is created, since the
field falls into a fixed point where only N exists.

IV. EXCITABLE WAVES SUCCESSIVELY GENERATED BY
INTERNAL STOCHASTICITY

We have observed above that even after the subprocesses
�S� is effectively over, a small amount of X and A �or X��

remaining unburned can ignite the subprocess �P� in the field
of rich N. That is, the incomplete burning of X and A, or
imperfect burning of subprocess �S� due to the inherent sto-
chastic nature of CA is responsible for the successive forma-
tion of excitable waves. To establish this mechanism in more
general theoretical context, we resume our study with the
notion of excitable system, which is of a different kind from
the FitzHugh-Nagumo �FN�. In doing so, we borrow the help
of the reaction-diffusion equation method �RD� with and
without noise.

A. Excitable system supported by a hidden oscillation
and diffusion

1. Stable fixed point and its induced instability

First of all, we note that the present system, which hides
oscillation behind between the subprocesses �P� and �S�, has
actually a very clear and trivial stable fixed point, that is,
d�X� /dt=d�N� /dt=d�A� /dt=d�X�� /dt=d�I� /dt=0 at �X�
= �X��= �I�=0. Thus, this entire system in the mean field is
not expected to undergo self-sustained temporal oscillation.
However, to understand more about the physical significance
of the stable fixed point and its property, we explore the
dynamics with use of the RD equations, representing the rate
process of the model �Eqs. �2a�–�2e�� as

�x

�t
= − k1xa + k1

�x� + 2k2x�n − k3x + DX�2x , �7a�

�n

�t
= − k2x�n + k4ai + DN�2n , �7b�

�i

�t
= 3k3x − k4ai − k5i + DI�

2i , �7c�

�a

�t
= − k1xa + k1

�x� + 2k2x�n − k4ai + DA�2a , �7d�

�x�

�t
= k1xa − k1

�x� − k2x�n + DX��2x�, �7e�

where x�z , t� ,n�z , t� , i�z , t� ,a�z , t�, and x��z , t� are the spa-
tiotemporal concentration of X, N, I, A, and X�, respectively,
in the two-dimensional space z and time t. k1 and k1

� are the
rate constants of the forward and reverse reaction process
�2a�, and k2, k3, k4, and k5 are the rate constants of reactions

TABLE II. System parameters chosen for the reaction-diffusion
equations.

x0 1.0 DX 0.2 k1 3.0

n0 10.0 DN 0.2 k1
� 1.0

i0 0.0 DI 0.2 k2 3.0

a0 10.0 DA 0.2 k3 2.0

x0
� 0.0 DX� 0.2 k4 4.0

k5 3.0

(a) (b) (c)

(f)(e)(d)

FIG. 9. �Color online� A very small amount of X and A �or X��
left in the central spot due to the stochastic fluctuation realized by
the CA dynamics ignites the next reaction process. Once this hap-
pens, the small wave is amplified and propagated in the macro-
scopic scale since the field is already full of N. �a� t=300, �b� t
=312, �c� t=324, �d� t=336, �e� t=360, and �f� t=400.
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FIG. 10. �Color online� �a� The distributions of the individual
components near the first mature wave in the radial direction at t
=900. �b� The snapshot of X distribution.
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�2b�–�2e�, respectively. Dj is the diffusion constant of the
component j. No external noise is introduced. Table II lists
the system parameters for the present RD equations. We
solve the above RD Eqs. �7a�–�7e� using the Crank-Nicolson
scheme �21� on a square grid to obtain the global solutions of
x�z , t� ,n�z , t� , i�z , t� ,a�z , t�, and x��z , t�. An obvious fixed
point of this set of differential equations is found at x�z , t�
=0, i�z , t�=0, x��z , t�=0, n�z , t�=an arbitrary constant,
a�z , t�=an arbitrary constant. Therefore the choice of
x�z ,0�=0, i�z ,0�=0, x��z ,0�=0 and the uniform distribu-
tion of n�z ,0� and a�z ,0� makes sense as a stable initial
condition. At the same time, it is expected that the
asymptotic solution at a large t may fall into the manifold of
these fixed points.

The most striking observation in the above RD calcula-
tions is that only a transient symmetric ring wave is gener-
ated, which disappears shortly, and no long-standing spa-
tiotemporal pattern occurs in marked contrast to the CA
solutions. Figures 11�a�–11�d� show such a space-time
propagation of the excitable wave of a ring shape. In panel
�d� at t=50.0, the field is occupied by N only. Panel �e�
displays a snapshot of the spatial distribution of the indi-
vidual component in the RD. Two peaks of X in the wave
front are observed; one is a small bump at r�75 and the
other is the higher peak at r�50. They are similar to the first
and second waves in the CA, respectively.

Thus it is concluded that the stable fixed point, �X�
= �X��= �I�=0, is stable within its own closed space, but it
turns to be unstable, once a tiny droplet containing X and A
is added from the outside of the system. We may say that this
fixed point is “stable internally but unstable externally.”
What is more, the induced instability thus brought in be-
comes quickly amplified to a macroscopic level due to the
autocatalytic proliferation reaction.

2. Response to a weak external noise: A difference from
the FN excitation

The above property of the “stable” fixed point leads to a
significantly different behavior of excitation from that of the
FN model in the response to external noise. The FN sits at
the stable fixed point and can be excited by external noise
�perturbation�, which is larger than a threshold value. Usu-
ally this threshold should not be very small. This is because
if a neural connection is easily excited even by a very weak
noise, or in other words, if it is unstable to any weak noise, it
should be always kept fired almost continuously.

On the other hand, system PIA is unstable to adding a tiny
droplet of containing X and A, and therefore, it is expected to
be also unstable to external noise that can induce a weak
fluctuation of the concentration of the component. To con-
firm this expectation, we numerically study the present dy-
namics in terms of the RD equations, to which an external
noise is added as

�x

�t
= − k1xa + k1

�x� + 2k2x�n − k3x + DX�2x + 
a�a�z,t� ,

�8a�

�n

�t
= − k2x�n + k4ai + DN�2n , �8b�

�i

�t
= 3k3x − k4ai − k5i + DI�

2i , �8c�

�a

�t
= − k1xa + k1

�x� + 2k2x�n − k4ai + DA�2a + 
b�b�z,t� ,

�8d�

�x�

�t
= k1xa − k1

�x� − k2x�n + DX��2x�, �8e�

where �a�z , t� and �b�z , t� are the Gaussian white noises, and

a and 
b are the amplitudes of the fluctuation.

Our numerical realization of the above equations shows
very clearly that a small amount of X and A produced artifi-
cially by the external fluctuation form a new core of the next
wave in the abundant N field, and they generate the succes-
sive propagation of the circular waves starting from the ran-
domly formed cores. Figure 12 displays the time series of
such propagation under the parameters 
a=
b=0.5: since X
is produced by the external fluctuation, X immediately pro-
liferates everywhere before the initially planted core expands
��a� t=2.0, �b� t=3.5�, and then X is eventually extinguished
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FIG. 11. �Color online� ��a�–�d�� Single excitable wave in the
RD equations �7a�–�7e�. �a� t=2.5, �b� t=15.0, �c� t=30.0, and �d�
t=50.0. After the single passage of a pulse wave, the field gets filled
with N only. �e� The concentration of each component changes in
the manner similar to those in Fig. 10�a�. The inset shows a mag-
nification of the part surrounded by the large circle.
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leaving a large amount of N ��c� t=10.0�. However, a small
amount of X and A produced artificially by the external fluc-
tuation generates a new core of the next wave ��d� t=16.0�,
and it propagates in the abundant N field ��e� t=20.0�. Thus,
artificially planted X and A by the external fluctuation leads
to the successive propagation of the circular waves starting
from the randomly formed cores ��f� t=50.0�.

B. Driving the excitable system with internal stochasticity
and diffusion

Although even a weak external noise can cause successive
generation and propagation of the excitable waves in RD, it
is quite obvious that the external noise is not the physical
origin of the concentric ring pattern and the others observed
in CA dynamics of Secs. II and III. One reason for this con-
clusion is that the present CA does not include any external
noise throughout the calculations, and another one is that the
excitable waves observed above in the RD equations with
external noise disappear quickly as soon as the external noise
is switched off.

1. Internal stochasticity

The dramatic difference of the pattern formation in RD
from that of the CA as studied in the preceding subsection is
readily understood by confirming that all the components, X,
X�, I, and A except for N, have been burned out completely
within its �single� wave front, and concomitantly nothing
other than N is left behind after the passage of the wave
�there is no stochastic factor for a small amount of these
components to be unburned in the RD scheme�. �Recall Figs.
11�a�–11�d�� This directly implies that there remains neither
X, A nor X� that is required to form a new core of the next
wave �see Fig. 9�. Thus, the field has fallen into the stable
fixed point that represents a state filled with only N. To re-
produce the successive waves in the RD, therefore, one
needs to keep adding such a seed one after another, and this
is indeed the case.

In the CA dynamics, on the other hand, some of the re-
sidual �unburned� elements of X and A are carried by diffu-
sion in a stochastic manner and may encounter each other
with the help of diffusion. By the collision, the next process
�subprocess �P�� is fired and the wave is amplified quickly to
the macroscopic level. These residual elements remain due to

the stochastic fluctuation dynamics inherent to CA.
To survey the role of the intrinsic stochastic fluctuation in

the CA dynamics for generating successive wave propaga-
tion more clearly, we next introduce the augmented RD
equations which include threshold dynamics with local fluc-
tuation �more details in Ref. �17��. We try to mimic the sto-
chastic fluctuation of CA by regarding it as internal fluctua-
tion �not an external noise�. There can be many ways to do
so. Indeed we have tested several of them and found not
much difference among them. Below is one such realization.

�x

�t
= − �k1x�a� + 
1�1�z,t�� + �k1

�x�
� + 
1

��1
��z,t��

+ �2k2x�
�n� + 2
2�2�z,t�� − �k3x� + 
3�3�z,t�� + DX�2x ,

�9a�

�n

�t
= − �k2x�

�n� + 
2�2�z,t�� + �k4a�i� + 
4�4�z,t�� + DN�2n ,

�9b�

�i

�t
= �3k3x� + 3
3�3�z,t�� − �k4a�i� + 
4�4�z,t��

− �k5i� + 
5�5�z,t�� + DI�
2i , �9c�

�a

�t
= − �k1x�a� + 
1�1�z,t�� + �k1

�x�
� + 
1

��1
��z,t��

+ �2k2x�
�n� + 2
2�2�z,t�� − �k4a�i� + 
4�4�z,t��

+ DA�2a , �9d�

�x�

�t
= �k1x�a� + 
1�1�z,t�� − �k1

�x�
� + 
1

��1
��z,t��

− �k2x�
�n� + 
2�2�z,t�� + DX��2x�, �9e�

where x�, n�, i�, a�, and x�
� are the quasidiscrete concentration

of X, N, I, A, and X�, respectively. Here, x� is defined as

x� � �x �x  ��
0 �x � �� ,

� �10�

by using the threshold value �. n�, i�, a�, and x�
� are defined

in a similar manner. �1�z , t�, �1
��z , t�, �2�z , t�, �3�z , t�, �4�z , t�,

and �5�z , t� are the Gaussian white noises. The discretization
as done in Eq. �10� has been considered to mimic the finite
process inherent in CA. The amplitude of the fluctuation in a
reaction i, 
i, can be estimated at the square root of the mean
production rate in the reaction i; 
1=	k1x�a��, 
1

�=	k1
�x�

��,

2=	k2x�

�n��, 
3=	k3x��, 
4=	k4a�i��, and 
5=	k5i��. We
set the same system parameters as the noiseless RD Eqs.
�7a�–�7e� listed in Table II. As shown in Fig. 13, these equa-
tions can successfully generate the successive wave propaga-
tion that is similar to those observed in the CA dynamics. A
propagating wave leaves behind tiny residues of X �panel
�b��, and then it forms the next wave �panel �c��. Gradually,
several cores of the new waves are formed �panel �d��, and
finally the steady successive wave propagation fills the entire

(a) (b) (c)

(d) (e) (f)

FIG. 12. �Color online� Generation of successive waves in the
RD Eqs. �8a�–�8e� subject to an external noise of 
a=
b=0.5. �a�
t=2.0, �b� t=3.5, �c� t=10.0, �d� t=16.0, �e� t=20.0, and �f� t
=50.0. See the text about the description of the varying field.
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field with traveling waves �panel �e��. However, it should be
noted that the “internal fluctuation” thus incorporated cannot
be rigorously distinguished from the “external noise” in their
effects on computation. After all, what we could confirm is
only that to reproduce the results of CA in terms of the RD
equations one needs appropriate noise anyway, either exter-
nal or internal.

Incidentally, we would like to mention to the mean-field
dynamics of the above Eqs. �9a�–�9e�, from which we have
intentionally removed the diffusion terms to see the role of
diffusion. There are two important roles played by diffusion.
One is of course the driving force to propagate an excitable
wave outward. The second is that it assists the residual un-
burned elements in the stochastic process to encounter lead-
ing to form a core of another excitation. Therefore, as ex-
pected, the RD with internal fluctuation but without diffusion
shows only a single excitation �pulse generation� that does
not propagate in space. Thus it turns out that both the inher-
ent stochastic fluctuation and the diffusion are important to
generate the successive wave propagation.

2. Stochastic versus deterministic methods to solve dynamical
equations

As clarified above, the self-sustained oscillation in CA
dynamics to generate and propagate the concentric ring
waves is due to the stochastic fluctuation leaving a small
amount of unburned components such as X and A. This fluc-
tuation is repeated whenever such an excitable wave is
propagated. As shown above, on the other hand, the deter-
ministic RD equations without any noise or internal fluctua-
tion give only the solutions of burning the components com-
pletely and thereby leaving only N behind, which does not
reproduce a self-sustained oscillation.

In studying dynamical systems in general, one can usually
choose either the deterministic approach based on differen-
tial equations or the stochastic method basically resorting to
“random walk.” In the latter methods, discrete variables are
often adopted and global symmetry is missing in the local
solutions. In linear dynamics such as the simple diffusion
equation and the Schrödinger wave equation, it is mathemati-

cally proved that the perfect integration �summation� of the
path solutions based on random walks gives a global distri-
bution function of the differential equations �22�. In nonlin-
ear regime, Gillespie �23� argued that the stochastic approach
has a firmer physical basis and hence proposed his Monte
Carlo based algorithm to treat homogeneous chemical sys-
tems. �See also the work of Gibson and Bruck �24�.� The
naive RD is a typical example of the deterministic approach,
while CA �16� and Monte Carlo based methods such as the
Gillespie method along with their extensions are well known
as the stochastic method. Despite the claim of Gillespie �23�
that the stochastic method is physically more preferable, it is
generally assumed that the difference between the solutions
of the deterministic and stochastic methods is small enough
to the order of stochastic fluctuation. However, the present
work has found that it is not necessarily the case. We here
have reported a generic example of very large discrepancy
�qualitatively difference� between the deterministic RD solu-
tions and the stochastic counterparts.

V. CONCLUDING REMARKS

We have studied a nonlinear system that contains an acti-
vation process in autocatalytic proliferation dynamics along
with the process of its self-suppression. The model turns out
to generate various spatiotemporal patterns with the cellular
automaton method. We have studied the mechanism of these
pattern formations. In particular, it has been shown that the
geometry and timing of the first, second, and mature waves
are critical to generate these patterns. It turns out that the
ratio of the activator and nutrition in the initial condition is a
key parameter to determine the patterns. Therefore, the spa-
tial gradient of the initial distribution of the activator can be
used as a parameter that may lead to the production of inter-
esting dynamical patterns. Eventually this procedure will
make it possible to control the pattern formation.

We have also analyzed the mechanism of successive gen-
eration of propagating excitable waves in terms of the differ-
ence between RD and CA. First of all, the present system is
an excitable system having a stable fixed point, which turns
out to be unstable to adding a small amount of a couple of
components from the outside. This excitation mechanism is
therefore different from that represented by the FN system.
For the present system to be an excitable one, the following
three factors have been found to play key roles: �1� the re-
action network is composed of two subprocesses, which can
potentially induce temporary oscillation by the stochastic in-
ternal fluctuation. Even a very small fluctuation can be am-
plified to a macroscopic level due to the proliferation dynam-
ics lying behind. However, the system falls into a stable fixed
point unless the following two mechanisms work out. �2�
After a single circuit of reactions is over, in which a pulse
wave is propagated outward, a few particles can remain un-
burned in the field in a stochastic manner. �3� These un-
burned elements collide with each other with the help of
diffusion and ignite the next reaction step, eventually leading
to another wave of macroscopic size. The CA naturally ma-
terializes this stochastic process of incomplete reaction, but
RD without noise does not. Indeed RD without noise pro-

(d)

(c)(a) (b)

(e)

FIG. 13. �Color online� Generation of successive wave in the
RD Eqs. �9a�–�9e�. A propagating wave leaves the tiny residues of
X behind ��a� t=25, �b� t=34�, which form the next waves ��c� t
=40�. Gradually, several cores are formed ��d� t=50� and eventually
the successive waves fill the entire field ��e� t=100�.

TRAVELING EXCITABLE WAVES SUCCESSIVELY… PHYSICAL REVIEW E 79, 056219 �2009�

056219-11



duces only a single pulse wave but does not give birth to the
successive excitable waves, and in fact RD with noise can
generate the successive wave propagation.

In short, a tiny stochastic fluctuation is amplified to a
macroscopic level as a pulse wave due to proliferation dy-
namics, and this process can be repeated many times giving
successive waves, the repetition of which is actually sup-
ported by an implicit mechanism of temporal oscillation be-
tween activation and its self-suppression.
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APPENDIX: ALGORITHM FOR REACTION PROCESSES

We here introduce three characteristic features of the CA
rules that are difficult for the ordinary rate equation method
to describe.

�1� There are two elementary reaction processes consum-
ing A in the model �Eqs. �2a�–�2e��; activation reaction for
the proliferation Eq. �2a� and inhibitory reaction Eq. �2d�.
There is no a priori reason to determine the order of choos-
ing the elementary processes. So, one of these reactions is
stochastically selected depending on the number of particles
related to them �X or I� at the same node. Then, we deter-
mine whether selected reaction actually takes place or not,
with a predetermined reaction probability.

�2� Consider the decomposition reaction of X as in Eq.
�2c�. Basically, its rate should depend only on the number of
X at each node. However, since X can be involved in the
other reaction Eq. �2a� at the same time, the decomposition
reaction cannot be treated independently as though no other
reactions existed. Thus, the decomposition reaction of X ef-
fectively depends on the local circumstances. Similarly, the
decomposition of I also effectively depends on the local cir-
cumstances.

�3� We make a rule that in proliferation reaction, one of
newly born X�s should be recoiled and thereby pushed out
from the node at which they were born with a probability s
predetermined. This effect is described as follows. When X
splits into two particles by the proliferation reaction, one of
them is stochastically forced to push out to a neighboring
node.

In this appendix, we describe the CA rules in a great
detail. In what follows, Xi

z denotes the number of X particles
at a node z before a reaction, �X+

z ��X−
z � indicate the incre-

ment �decrement� of the number of X particles at the node z
during the reaction, whereas Xf

z denotes the number of X
particles at the node z after the reaction, satisfying Xf

z =Xi
z

+�X+
z −�X−

z . For the other components, the similar notations
are used.

1. Treatment of push-out effect

When a single X particle splits into two, one of them can
be stochastically pushed out to a neighboring node or re-

mains at the original point. We here define s as a probability
for the X particle to stay at the original node �0�s�1�.
Also, since the particle is pushed out to isotropic directions,
the probability to be pushed out to one of the nearest-
neighbor nodes is 1−s

6 . In this paper, we set s=0.99 through-
out. A random number R in �0,1� is used to determine a node
to which one of two split X particles should move. We denote
these nodes as S.

2. CA rules

�1� Perform the following steps from step �2� to step �7�
for all the nodes.

�2� Calculate the probability pc
z to choose the reaction

processes �activation Eq. �2a� or inhibition Eq. �2d��
depending on the local state �Xi

z and Ii
z� at a node z,

pc
z =

tanh�Xi
z−Ii

z�+1
2 �25�.

�3� Repeat the next substeps Ai
z times at the node z.

�a� Generate a random number R in �0,1�.
�b� If R� pc

z, then perform the next substeps:
�i� Go to the procedure A.
�ii� If the procedure A returns “true,” then go back

to step �3�.
�iii� Go to the procedure D. Then, go back to step

�3�.
�c� If R pc

z, then perform the next substeps:
�i� Go to the procedure D.
�ii� If the procedure D returns “true,” then go back

to step �3�.
�iii� Go to the procedure A. Then, go back to step

�3�.
�4� Repeat the procedure C �Xi

z−�X−
z � times at the node z.

�5� Repeat the next substeps Xi
�z times at the node z.

�a� Go to the procedure B.
�b� If the procedure B returns “true,” then go back to

step �5�.
�c� Go to the procedure F. Then, go back to step �5�.

�6� Repeat the procedure E �Ii
z−�I−

z � times at the node z.
�7� Go back to step �2�.
�8� After the above procedures are completed, calculate

Xf
z, Nf

z, If
z, Af

z, and Xf
�z for all the nodes.

3. Reaction procedures

A: X+A→X� �Eq. �2a� forward�.
�a� If Xi

z−�X−
z �0, then perform the next steps �b�

and �c�. Otherwise, return “false” �Eq. �2a� for-
ward does not occur� and go back to the calling
step without change.

�b� Generate a random number R in �0,1�.
�c� If R�r1, then add unity to �X−

z , �A−
z , and �X+

�z,
respectively, and then return “true” �Eq. �2a� for-
ward occurs� and go back to the calling step. Oth-
erwise, return “false” and go back to the calling
step without change.

B: X�+N→2X+2A �Eq. �2b��.
�a� If Ni

z−�N−
z �0, then perform the next steps �b�

and �c�. Otherwise, return “false” �Eq. �2b� does
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not occur� and go back to the calling step without
change.

�b� Generate a random number R in �0,1�.
�c� If R�r2, then add unity to �X−

�z, �N−
z , �X+

S, and
�X+

z , respectively, and add 2 to �A+
z , and then

return “true”�Eq. �2b� occurs� and go back to the
calling step. Otherwise, return “false” and go
back to the calling step without change.

C: X→P1+�I �Eq. �2c��.
�a� Generate a random number R in �0,1�.
�b� If R�r3, then add unity to �X−

z , and add � to �I+
z

�Eq. �2c� occurs�.
�c� Go back to the calling step.

D: A+ I→N �Eq. �2d��.
�a� If Ii

z−�I−
z �0, then perform the next steps �b� and

�c�. Otherwise, return “false” �Eq. �2d� does not

occur� and go back to the calling step without
change.

�b� Generate a random number R in �0,1�.
�c� If R�r4, then add unity to �A−

z , �I−
z , and �N+

z ,
respectively, and then return “true” �Eq. �2d� oc-
curs� and go back to the calling step. Otherwise,
return “false” and go back to the calling step
without change.

E: I→P2 �Eq. �2e��.
�a� Generate a random number R in �0,1�.
�b� If R�r5, then add unity to �I−

z �Eq. �2e� occurs�.
�c� Go back to the calling step.

F: X+A←X� �Eq. �2a� backward�.
�a� Generate a random number R in �0,1�.
�b� If R�r1

�, then add unity to �X−
�z, �X+

z , and �A+
z ,

respectively �Eq. �2a� backward occurs�.
�c� Go back to the calling step.
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